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The ergodic properties of many-body systems with repulsive-core interactions are the
basis of classical statistical mechanics and are well established. This is not the case for
systems of purely-attractive or gravitational particles. Here we consider two examples,
(i) a family of one-dimensional systems with attractive power-law interactions, |xi −
x j |ν , ν > 0, and (ii) a system of N gravitating particles confined to a finite compact
domain. For (i) we deduce from the numerically-computed Lyapunov spectra that chaos,
measured by the maximum Lyapunov exponent or by the Kolmogorov–Sinai entropy,
increases linearly for positive and negative deviations of ν from the case of a non-chaotic
harmonic chain (ν = 2). For 2 < ν ≤ 3 there is numerical evidence for two additional
hitherto unknown phase-space constraints. For the theoretical interpretation of model
(ii) we assume ergodicity and show that for a small-enough system the reduction of
the allowed phase space due to any other conserved quantity, in addition to the total
energy, renders the system asymptotically stable. Without this additional dynamical
constraint the particle collapse would continue forever. These predictions are supported
by computer simulations.

KEY WORDS: Unstable systems, confined gravitational systems, ergodicity, chaotic
dynamics, conservation laws, lyapunov spectrum

PACS numbers: 05.45.Pq, Numerical simulation of chaotic systems; 05.20.−y, Clas-
sical statistical mechanics; 36.40.Qv, Stability and fragmentation of clusters; 95.10.Fh,
Chaotic dynamics.

1. INTRODUCTION AND MOTIVATION

A very basic assumption of classical equilibrium statistical mechanics is that
the phase trajectory originating from an (almost) arbitrary point in phase space

1 Institut für Experimentalphysik, Universität Wien, Boltzmanngasse 5, A-1090 Wien, Austria; e-mail:
harald.posch@univie.ac.at

2 Institut für Theoretische Physik, Universität Wien, Boltzmanngasse 5, A-1090 Wien, Austria

843

0022-4715/06/0800-0843/0 C© 2006 Springer Science+Business Media, Inc.
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densely covers a representative part of the whole energy surface such that any
time average of an observable can be replaced by an ensemble average over the
energy surface. From a physical point of view, this so-called ergodic hypothesis(1)

turns out to be extremely successful for three- or two-dimensional molecular sys-
tems with a short-ranged repulsive pair potential. Even for three particles in a
box or on a torus numerical simulations suggest ergodicity and mixing. Math-
ematically, ergodicity and strong mixing has only been proven for a class of
hard ball systems,(2) such as the fully hyperbolic Sinai billiards with strictly con-
vex scatterers,(3) and for a large number of hard spheres on a three-dimensional
torus.(4) Unfortunately, these proofs do not necessarily carry over to more phys-
ical systems with smooth interactions,(5) but they carry over to infinite quantum
systems.(6)

The situation is even more complicated for systems with long range inter-
actions such as gravitation, and not much is known for such cases.(7,8) This is
partly due to the fact that in astrophysical problems the phase space is usually not
bounded and that the notion of ergodicity is more problematic than in statistical
mechanics.

Here, we examine two problems, which nicely illustrate the complexity of
the situation.

The first of these problems is the one-dimensional sheet model,(9) which was
originally proposed as a model for the dynamics of stars transverse to the galactic
plane of a highly-flattened galaxy.(10,11) An exact statistical description has been
given by Rybicki, both in the canonical and microcanonical ensembles.(12) Here
we are particularly interested in the microcanonical case, which parallels our
computer simulations of the Lyapunov spectrum below. The model consists of N
infinite parallel mass sheets, where each sheet extends over the whole yz-plane
and moves along the x-axis under the mutual gravitational attraction of all the
other sheets. The Hamiltonian is usually written in the form

H =
N∑

i=1

p̃2
i

2s
+ 2πGs2

N−1∑
i=1

N∑
j>i

∣∣xi − x j

∣∣ , (1)

where G is the gravitational constant, xi and p̃i denote the position and momen-
tum of a sheet, and s is its mass. Due to the attractive potential the final state is
a single cluster, and no external boundary is required. Assuming microcanoni-
cal equilibrium, the local density and the velocity distributions are known(9) for
any number of particles, N . However, for N ≤ 10 Reidl and Miller(13,14) have
demonstrated the existence of regularity islands with a finite phase space measure,
which strictly prevents ergodicity in this case. For the computation of single-body
equilibrium properties(15) the statistical significance of these islands is small: for
fully-relaxed equilibrium systems with N = 10 particles the density and veloc-
ity distributions of the cluster particles agree well with the respective theoretical
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distributions based on the assumption of ergodicity.(9) For the time evolution, how-
ever, the islands play a decisive role by trapping evolving states for a long time.
Since they are surrounded by “sticky regions” with almost vanishing hyperbolicity
and, hence, spreading power between (infinitesimally) separated trajectories, the
computation of the time-dependent (local) Lyapunov exponents is a convenient
tool for the localization of such sticky regions and hidden regularity islands. From
our simulations we have indications for the existence of such sticky regions for
systems with up to 32 sheets.(9)

In Sec. 2 we extend this work to a whole family of attractive potentials which
contains the sheet model as a special case. The emphasis is on the Lyapunov
spectrum and the Kolmogorov–Sinai entropy of such systems, which are taken as
a measure of chaos. In addition to the familiar constants of the motion, we present
evidence for strange dynamically-conserved quantities in phase space which cause
two additional Lyapunov exponents to vanish.

Recently we have studied the famous restricted three-body problem with a
heavy mass M (the “Sun”) and a small mass m (“Jupiter”) orbiting with constant
angular velocity in a plane around their common center of mass. The motion of a
test particle (“Satellite”) in the orbital plane of M and m is observed, which is so
light that it does not affect their circular orbits. Let us consider a strongly perturbed
case m/M = 1/9(16) (which exceeds the actual mass ratio between Jupiter and the
Sun by more than a factor of 100). By a suitable choice of the test particle’s energy
it moves chaotically in a co-rotating bounded domain in space which includes the
regions around M and m with a narrow connecting channel between them. If the
system is ergodic, a simple theorem(16) requires that the microcanonical density
in configuration space is constant over the whole accessible domain. Computer
simulations reveal that the density is almost, but not strictly, constant indicating that
the system is not strictly ergodic. This is confirmed by the existence of regularity
islands in a Poincaré map of the flow.(16)

This problem has motivated us to consider as our second example in Sec. 3
the general (unrestricted) case of N ≥ 3 particles of similar or equal mass in the
plane, which interact with a gravitational 1/r -potential and which are confined to
a bounded domain. We distinguish three cases:

1. The confining boundary is a reflecting square such that the energy is the
only conserved quantity.

2. The confining boundary is a reflecting circle such that energy and angular
momentum are conserved.

3. The particles are on a torus T 2 (periodic boundaries) such that energy and
linear momentum are conserved.

Assuming that the systems are ergodic and that the microcanonical equilibrium
state exists, it will be shown in Sec. 3.1 that, for small-enough N , the phase-space
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reduction associated with any conserved quantity, in addition to the total energy,
is responsible for a qualitatively-different behavior between case 1 and the other
cases 2 and 3. These microcanonical predictions are tested and confirmed, to some
extent, by computer simulations in Sec. 3.2. We conclude with a short discussion
in Sec. 4.

2. CHAOS IN ONE-DIMENSIONAL SELF-GRAVITATING SYSTEMS

In this section we consider N particles in one dimension with a Hamiltonian

H =
N∑

i=1

p2
i

2m
+ λ

N

N−1∑
i=1

N∑
j>i

∣∣∣∣ xi − x j

σ

∣∣∣∣
ν

, (2)

where xi , pi and m in Eq. (2) are the position, momentum and mass of particle
i , respectively, and where ν is a positive parameter.(9) For ν = 1, and in view of
the scaling relations p̃ = p/N , s = m/N , and H = H/N , Eq. (2) reduces to the
sheet-model Hamiltonian in Eq. (1), if λ is identified with 2πGs2. For ν = 2 the
Hamiltonian (2) describes a linear harmonic chain, for ν = 0 it corresponds to
a one-dimensional ideal gas, and for ν = −2 to an exactly-solvable Calogero–
Sutherland model on the line,(17,18) which has found many recent applications in
physics.(19) We restrict our simulations to ν ≥ 1.

In our numerical work we use reduced units for which the length parameter
σ , the particle mass m, and the energy parameter λ are all unity. The unit of time
is

√
mσ 2/λ. In all numerical simulations the energy per particle, H/N , is also

unity, and the total energy becomes E = Nλ.

2.1. The Sheet Model, ν = 1

For all simulations with ν = 1 we use an “exact” algorithm, which steps
from one crossing event of any two particles to the next,(20,21) and which uses a
highly-optimized sorting scheme of order O(N ).(22) More recently, heap-ordered
tree codes have been suggested.(23) Here, we compute full Lyapunov spectra for
systems with N ≤ 90. Each system is relaxed for at least 7 × 107 time units
before an averaging for the Lyapunov spectrum is initiated, which lasts for at
least 1.8 × 106 time units. For comparison, an oscillation period tc for a typical
particle is about 7.3 time units. Our algorithm for the computation of the Lyapunov
spectrum is described in detail in ref. 9.

In Fig. 1 the particle-number dependence of the maximum Lyapunov ex-
ponent, λ1, and that of the Kolmogorov–Sinai entropy per particle, hKS/N , is
shown. According to Pesin’s theorem(24) hKS is obtained as the sum of all positive
exponents. Figure 1 extends our previous results(9) to N = 90. Where the data
overlap, the agreement with the results of Tsuchiya et al.(25,26) and Benettin
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Fig. 1. Particle-number dependence of the maximum Lyapunov exponent, λ1, of the Kolmogorov–
Sinai entropy per particle, hKS/N , and of the smallest positive exponent, λN−2, for the sheet model
(ν = 1). The open squares, diamonds, and triangles are results taken from Tsuchiya et al. and the open
circles from Benettin et al. as explained in the main text.

et al.(29)(distinguished by the open symbols) is excellent. One finds that the
strongest phase-space expansion occurs for N ≈ 16. The Kolmogorov–Sinai en-
tropy per particle has a maximum for N ≈ 24. There is supportive evidence by
Reidl and Miller, who found that clusters of about that size coalesce most rapidly(31)

indicating fastest mixing.
As expected, both λ1 and hKS decrease monotonously for larger N and vanish

for N → ∞ due to the regularity of the mean-field solution in this limit. For sys-
tems in maximum-entropy equilibrium states, the data of Tsuchiya and Gouda(26)

(open diamonds and triangles in Fig. 1) suggest the following asymptotic scaling
behavior for large N : λ1 ∼ 1/N 1/5, λN−2 ∼ 1/N , and hKS/N ∼ 1/N 1/5. How-
ever, in all these simulations no full convergence of the shape of the Lyapunov
spectrum to a universal scaling function has been achieved, as N becomes large.
Since hKS converges to zero for N → ∞, phase-space mixing becomes progres-
sively insignificant and the relaxation of collective properties(15) to equilibrium
becomes excessively slow.(30)

As noted also by Tsuchiya et al.(26) the perturbation vector associated with
λ1 is strongly localized in physical space and in the single-particle phase space,
such that only a small fraction of all the particles contributes to the respective
instability at any instant of time. The same result also applies for systems with re-
pulsive interactions.(27,28) However, the smallest positive exponents (such as λN−2)
have perturbation vectors with non-vanishing components contributed by all the
particles and, thus, describe collective instabilities in phase space.(26) In a system
of hard particles confined to a periodic or reflecting square box, such perturba-
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Fig. 2. Energy dependence for the three smallest positive Lyapunov exponents, λN−4, λN−3 and λN−2,
of the sheet model (ν = 1). The respective limiting slopes are 1 × 0.067, 2 × 0.067, and 3 × 0.067.

tion vectors even generate Lyapunov modes, which are periodic perturbations in
physical space with a well-defined wave vector and reminiscent of the Goldstone
modes of fluctuating hydrodynamics.(28,32−35) Although we did not find Lyapunov
modes for the sheet model, we made the following observation. Let L/2 denote
the maximum possible excursion of a particle, when all the other particles are at
rest at a single point, L/2 = Eσ/λ ∼ N . A plot of the smallest positive exponents,
λN−4, λN−3 and λN−2, in Fig. 2 as a function of 1/E ( ∼ 2/L) reveals straight
lines for large systems, E → ∞, which resemble the linear “dispersion relations”
for the Lyapunov modes found in quasi-one-dimensional hard-disk fluids.

2.2. The Case ν > 1

For ν �= 1 we have to solve the equations of motion explicitly. A predictor-
corrector algorithm,(36) accurate to O((�t)5), with a fixed time step �t = 2−10,
is used. Such a small time step is necessary for an accurate localization of the
crossing events. The time evolution of the Lyapunov vectors is computed with a
Runge–Kutta algorithm and with the same time step. Excluding the harmonic case
ν = 2, the relaxation to microcanonical equilibrium is much faster than for the
systems with ν = 1.(9) Thus, the initial relaxation period may be reduced to about
8000 time units. It is followed by an averaging interval for the Lyapunov spectrum
of about 2 × 105 time units.

In Fig. 3 the maximum Lyapunov exponent, λ1, and the Kolmogorov–Sinai
entropy per particle, hKS/N , of a 16-particle system are shown as a function of
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Fig. 3. Plot of the maximum exponent, λ1, and of the Kolmogorov–Sinai entropy per particle, hKS/N ,
for a 16-particle system as a function of the power ν of the pair potential.

the potential parameter ν. As expected, both quantities vanish for ν = 2. This is
the case of a regular harmonic chain, which is never chaotic. However, it is very
interesting to note that chaos, measured by λ1 or hKS, increases linearly for both
positive and negative deviations of ν from this specific case. The slope for hKS/N
is 0.037 for ν > 2.

It is interesting to note that for ν > 2 the maximum exponent λ1 is insensitive
to N : the results for a 10-particle system (not shown in Fig. 3) agrees very well
with the 16-particle result displayed in Fig. 3. This is a similar result we found for
hard-disk systems in two dimensions known to be ergodic.(32,34) It means that the
maximum Lyapunov exponent, which describes the fastest phase-space expansion,
is basically determined by two-body interactions and is not significantly affected
by the collective dynamics for ν > 2. For ν < 2, and for the sheet model, ν = 1,
in particular, λ1 strongly depends on N , which points to the collective nature of
the dynamics, culminating in the mean-field result limN→∞ λ1 = 0.

In Fig. 4 we plot the two smallest positive exponents, λN−3 and λN−2, for two
systems containing N = 16 (full symbols) and N = 10 (open symbols) particles,
as a function of ν. λN−3 (full and open squares) behaves as expected, being positive
for all ν with the exception of the case of the harmonic chain, ν = 2. But it is
most surprising to note that for both systems the exponent λN−2 (full and open
circles), which is expected to be small but positive, also vanishes, within numerical
accuracy, for 2 < ν ≤ 3. The same is true for the conjugate exponent, λN+3, which
according to the conjugate pairing rule for symplectic systems (37−39) is equal
to −λN−2. For 2 < ν ≤ 3, the systems behave as if, in addition to translation
invariance in space and time-shift invariance, there existed another independent
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Fig. 4. ν-Dependence of the two smallest positive Lyapunov exponents for a 16-particle system, λ13

(full squares) and λ14 (full circles), and for a 10-particle system, λ7 (open squares) and λ8 (open
circles).

continuous symmetry, which, according to Nöther’s theorem,(40,41) could give rise
to the two additional phase-space constraints and, hence, to the two vanishing
exponents unaccounted for up to now. Translation invariance in space, responsible
for momentum and center-of-mass conservation, generates two of the regularly
vanishing exponents, time-shift invariance, responsible for energy conservation
and vanishing perturbation growth in flow direction, generates the other two.(41)

In spite of a considerable effort, we have not been able to account for the surplus
vanishing exponents for 2 < ν ≤ 3 . This result seems to be independent of N .

3. GRAVITATIONAL PARTICLES CONFINED TO A BOX

3.1. Microcanonical Theory

We consider the case of N point particles with masses mi in d dimensions,
and introduce a one-parameter family of Hamiltonians

H =
N∑

i=1

p2
i

2mi
+ V ; V = −Gν

∑
i< j

mi m j

|xi − x j |ν , (3)

with a positive parameter ν. Here, xi and pi denote the position and momentum
of particle i , and Gν is the associated gravitational constant. In what follows we
assume that the system is ergodic. We distinguish three cases:

(1) The energy is the only conserved quantity, H = E , and linear and angular
momenta are not treated explicitly. The probability measure in phase
space is then given by δ(H − E)e−S(E), where S(E) is the microcanonical
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entropy. The state integral becomes∫
dd p1 · · · dd pN

∫
�

dd x1 · · · dd xN δ

(∑
i

p2
i

2mi
+ V − E

)

= c1

∫
�

dd x1 · · · dd xN

∣∣∣∣∣∣E + Gν

∑
i< j

mi m j

|xi − x j |ν

∣∣∣∣∣∣
(d N/2)−1

+

. (4)

where c1 is a constant. The space integral, which is over a finite compact
domain �, diverges for ν ≥ νc, and remains finite for ν < νc, where the
critical value νc is given by

νc = 2d

d N − 2
. (5)

Thus, in two dimensions and for ν = 1, the integral diverges for three or
more particles.

(2) Energy and angular momentum are conserved. The angular momentum
vector L is a pseudo vector with d(d − 1)/2 components. If in the state
integral the momenta and positions are constrained according to

∑
i xi ∧

pi = L, where it is assumed that the total angular momentum vanishes,
L = 0, one finds∫

dd p1 · · · dd pN

∫
�

dd x1 · · · dd xN δ

(∑
i

p2
i

2mi
+ V − E

)
δd(d−1)/2

×
(∑

i

xi ∧ pi

)
=

∫
�

dd x1 · · · dd xN c2(x)

×
∣∣∣∣∣∣E + Gν

∑
i< j

mi m j

|xi − x j |ν

∣∣∣∣∣∣
d
2 [N− d−1

2 ]−1

. (6)

Here, c2(x) is a function of the coordinates, and � is again a finite compact
domain in space. The convergence, or divergence, of the last integral is
controlled by a critical value of ν given by

νc = 2d

d
[
N − (d−1)

2

] − 2
. (7)

For d = 2 and ν = 1, the state integral is finite for three particles, but
diverges for N ≥ 4.
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(3) Energy and linear momentum are conserved. In the state integral the
momenta are constrained according to

∑
i pi = P, where we assume that

the total momentum P vanishes. One has

∫
dd p1 · · · dd pN

∫
�

dd x1 · · · dd xN δ

(∑
i

p2
i

2mi
+ V − E

)
δd

(∑
i

pi

)

= c3

∫
�

dd x1 · · · dd xN

∣∣∣∣∣∣E + Gν

∑
i< j

mi m j

|xi − x j |ν

∣∣∣∣∣∣
[d(N−1)/2]−1

, (8)

where c3 is a constant. Now the critical value for ν is

νc = 2d

d(N − 1) − 2
. (9)

For d = 2 and ν = 1, the state integral diverges for N ≥ 4.

Thus, assuming ergodicity we find for ν = 1 that there is a qualitative differ-
ence for a planar three-body systems, whether there is a constant of the motion
in addition to the total energy, or not. In the first case the state integral is finite
and, as a consequence, any collapse of the three particles cannot be complete. The
system heats up because of the collapse, but it reaches a stationary state with a
finite kinetic energy. In the second case, however, no finite state can exist, and the
system continues to collapse indefinitely.

In the following we test some of these theoretical predictions by computer
simulations.

3.2. Computer Simulations

For our numerical work the particle masses are chosen to be similar, but
not identical. We use reduced units, for which one of these masses is taken to be
unity. The unit of length is given by the size of the box, and the unit of energy is
then determined by taking the gravitational constant Gν equal to unity. We restrict
ourselves to the strictly gravitational case ν = 1.

The planar systems considered here consist of three particles enclosed in
a finite box with either hard or soft reflecting boundaries. For square boxes the
energy is the only constant of the motion, which corresponds to the case (1)
in Sec. 3.1. For circular boxes also the total angular momentum with respect
to the box center is conserved, which conforms to our case (2). In principle,
the conservation of linear momentum, case (3) of Sec. 3.1, can be achieved with
periodic boundaries, but in practice such boundaries are much harder to implement
for long-range gravitational potentials. They require the use of Ewald sums,(42,43)
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which are not well suited for the small systems considered here. For that reason we
have restricted ourselves to square and circular boundaries, the cases (1) and (2),
respectively.

The gravitational potential (3) provides another challenge for the simulation,
namely the singularity for vanishing particle separations. Various regularization
schemes have been devised, of which the transformation to Kustaanheimo–Stiefel
coordinates is the most successful.(44−46) Our simulation with soft boundaries uses
this scheme and is based on a code originally supplied by Mikkola and Aarseth.(46)

A Bulirsch–Stoer integration scheme(47) with variable time steps allows us to
keep the energy error low even for trying triple collisions. Typically this error did
not exceed 10−6 for a time of 150. The soft external box potentials are chosen
according to

V (x, y) = x10 + y10 (10)

for the square case, and

V (x, y) =
[π

4
(x2 + y2)

]5
(11)

for the circular case. In Fig. 5 the time evolution of the kinetic energy, 〈K (t)〉,
averaged over an ensemble of random initial conditions is shown for the two cases,
where the total energy is −1. 〈K 〉 continues to rise for the external potential with
four-fold symmetry, whereas it saturates for the circular case. In the former case

3
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<K> 

V(x,y) = x10 + y10

V(x,y) = [(π/4)(x2 + y2 )]5

Fig. 5. Kinetic energy of a three-particle system in an external potential as indicated by the labels. The
data are averages over an ensemble of 1000 trajectories with random initial conditions as described in
the main text.
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Fig. 6. Kinetic energy of a three-particle system in a box with an elastic hard boundary as indicated by
the labels. The data are averages over an ensemble of 1000 trajectories with random initial conditions
as described in the main text.

the collapse of the particles continues, whereas in the latter it comes to an end
fairly soon.

For the simulations employing hard elastic boundaries another algorithm
was used, which is based on a simpler, but less-efficient regularization scheme
of Szebehely.(48) The equations of motion were integrated with a Runge–Kutta
fourth-order algorithm with variable time step, and the energy drift did not exceed
10−4 over the length of a trajectory. The results are shown in Fig. 6.

Both regularization schemes used here fail for many-body collisions. Once
they occur, phase-space trajectories have to be discontinued. As a consequence,
the diverging kinetic energies could not be followed to times much larger than
shown in Figs. 5 and 6.

The quantity actually computed and integrated together with the trajectory
is 〈∫ t

τ=0 K (τ )dτ 〉0, where K (t) is either the instantaneous kinetic energy with
respect to the center of mass in the case of the smooth external potential, or
the instantaneous total kinetic energy for the case of hard boxes. The bracket in
this expression is an average over an ensemble of initial conditions, chosen from
a uniform random distribution of the particle coordinates in the allowed spatial
domain, and from a uniform random distribution of the momenta subject to a
possible additional constraint (vanishing angular momentum with respect to the
center of the box).The (numerical) derivative of this expression is taken as an
estimate of the ensemble-averaged kinetic energy, 〈K (t)〉 at time t . Each ensemble
average involves an average of typically thousand trajectories. The error bars in
Figs. 5 and 6 correspond to estimates of the standard deviaton.
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4. DISCUSSION

If the state integral of Sec. 3.1 diverges, we may be assured that the cluster
of particles will eventually collapse. According to a classical theorem (Corollary
(4.5.11) of ref. 50) we can say more: If the collapse occurs, it cannot be asymp-
totic, but must occur within a finite time. However, the theorem does not tell us
how fast. For systems with many particles it was found that for energies above a
certain threshold the system may be trapped in metastable states for a long time
before it continues to collapse(49) and the gravothermal catastrophe occurs. Ran-
dom fluctuations in combination with angular momentum exchange between the
particles may even drive the system out of the metastable state into long-lasting
gravo-thermal oscillations, before the collapse continues.

In a recent paper Pietronero and co-workers(51) studied the gravitational
clustering of up to 32,000 mass points in three dimensions in a finite box with
periodic boundaries. They find that the system finally settles in a stationary state
characterized by a single cluster with a finite density distribution and floating in
a gas of non-condensed particles. For so many particles ergodicity may be taken
for granted, and our case (3) applies in view of the toroidal boundary conditions
conserving linear momentum. However, for d = 3 and ν = 1, Eq. (8) predicts
that the state integral diverges for large N and that the collapse cannot reach a
stationary state. The appearance of a stationary cluster is therefore a consequence
of a regularization of the pair potential for small |xi − x j | in ref. 51. For 1/r -
potential systems with short-range cutoff, the transition from a homogeneous
gaseous state to the stationary clustered state is a phase transition of first order(52)

with the critical point determined by the ultraviolet cutoff.(53) The situation is
analogous to an attractive particle system interacting with a negative Gaussian
potential.(54)

If one wants to apply statistical mechanics to gravitating particles, they have
to be put in a box to prevent evaporation. But even then the volume of the energy
shell will become infinite because it is infinitely extended in kinetic energy. In
physical terms this means that, if the trajectory visits all regions on the energy
shell, high kinetic energies will dominate and the systems will keep heating up.
This is exactly what the computer simulations find, and also astrophysical facts
point in this direction. Putting particle systems in a box means that one keeps the
particle density high. Indeed, in the centers of galaxies, where such conditions
prevail, one finds double stars with breath-taking velocities.

The application of statistical mechanics to gravitational systems has been
criticized by van Kampen with the argument that the usual formalism does not
apply due to the fact that the volume of the energy shell becomes infinite and, thus,
the partition function diverges. This means that the tendency towards a negative
specific heat becomes even more dramatic. Ordinarily, a negative specific heat
implies that a system heats up when brought into contact with a heat bath. In the
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case studied here, not even a heat bath is required for the systems, they do it just by
themselves. However, for small-enough particle numbers this process may come
to an end if additional constants of the motion exist, which effectively remove the
singularity of the partition function.

The singular behavior of the partition function is in contradiction to nonrel-
ativistic quantum mechanics, where the energy is bounded from below and where
there is no difficulty in defining the thermodynamic functions for all N . Non-
relativistically, the possibility of a complete collapse does not exist in quantum
mechanics.(55) Nevertheless, a trace of this instability survives in the existence
of a negative specific heat in a certain range of energies. The essential physics
of this fact is captured in a very simple model by Hertel and Thirring.(56) What
is left of the vastness of the energy shell for high momenta is that its volume
increases more than exponentially with energy, which implies a negative specific
heat. Quasi-relativistically, for sufficiently high N the system collapses.(57,58) For
a recent discussion we refer to the work of Kiessling.(59)
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